Написать нам

Поле необходимо заполнить!
Поле необходимо заполнить!
Не пройдена проверка от автоматических сообщений
Необходимо согласие на обработку персональных данных

Мисс Видеоаналитика и мистер Тепловизор

Двое на виртуальной границе.

Мисс Видеоаналитика и мистер Тепловизор.jpgЯ не мог не разместить статью с таким эпиграфом от моего давнего знакомого Дмитрия Леонидовича Филлипова!

Они не могли не встретиться. Это было предопределено задолго до того дня, когда еще они, не обменявшись ни одним словом, решились идти дальше рука об руку. Он уже не молод, хотя бодр, силен и вообще в порядке, как говорят американцы: You O’кay? Много повоевал, бывал и в космосе. Теперь, когда он избавился от всего, что его раньше обременяло, стал легче на подъем и вообще стал казаться моложе, чем тогда, в молодости, когда его сковывал этот страшный внутренний холод. Она… что говорить о ней. Она женщина – и этим сказано многое. Интуиция, мгновенные точные решения по, казалось бы, малейшему контрасту в чужом поведении. Получив богатое наследство от своего предка, которому приходилось считать крохи, чтобы добиться признания и выйти в свет, она сразу же порвала все связи с этим наглым выскочкой, претендовавшим на родство, несмотря на его активность, да-да, он так и предпочитал называться. Она не требует лишнего для решения своих задач. 

Теперь они вместе. И вы, наверное, уже их узнали. Разрешите представить эту прекрасную пару: мисс Видеоаналитика и мистер Тепловизор! 

Рынок систем тепловидения переживает бурный подъем, связанный с целым рядом технологических успехов микроэлектроники, что определяется применением микроболометрических приемников на основе оксида ванадия и других приемников, которым не нужна сложная дорогостоящая микрокриогенная система.
Таким образом, с одной стороны, тепловизоры стали доступнее по цене и их ресурс увеличился на порядок, форма выходных сигналов тепловизионного периферического оборудования не отличается от привычных стандартов телевизионных сигналов.
С другой стороны, уникальные возможности тепловизионного наблюдения просто не могут быть обойдены вниманием при создании систем физической защиты. Их следует вкратце напомнить и указать, какие преимущества это дает.

  1. Тепловизор воспринимает собственное излучение предметов, максимум которого приходится на длины волн 8–14 мкм, а не отраженное излучение стороннего источника видимого света (0,4–0,7 мкм), поэтому тепловое изображение не зависит от уровня внешней освещенности.
  2. Контраст объекта с фоном выше, чем в видимом диапазоне, поскольку чаще всего объекты теплее фона.
  3. Фон в тепловизионных изображениях равномернее, не такой пестрый, как в видимом диапазоне, а объекты не имеют теней.
  4. Средневолновое тепловое излучение, несущее информацию о наблюдаемой сцене, слабо поглощается туманом и не рассеивается им (если только капельки тумана не соразмерны с длиной волны излучения, что редко бывает в средней полосе), слабо рассеивается взвешенной пылью и дымом
    Мисс Видеоаналитика и мистер Тепловизор.gif
  5. По дальности обнаружения людей и транспортных средств тепловизор многократно превосходит средства охранного телевидения, в то же время изображение объектов специфично и не всегда дает возможность установить индивидуальные информационные признаки фигурантов, поэтому совершенно очевидно, что его использование в СФЗ ориентировано на обнаружение, а не на опознавание или идентификацию объектов.
  6. По той же причине тепловизору доступен контроль широких открытых пространств, как территорий, так и акваторий, включая береговую линию прибоя и приливов, где размещение средств обнаружения особенно проблематично.
  7. Тепловизор может совмещать функции раннего обнаружения и оценки обстановки.

Но это еще далеко не все. Из-за знаменитого эффекта «тюлевой занавески» тепловизор обладает демаскирующими свойствами. Тепловизионные камеры, будучи размещенными внутри периметра, недоступны вандалам и т. д. А что особенно важно – свойства тепловизионного изображения, о которых тут сказано, существенно облегчают анализ видеоконтента. Интеграция тепловизора с системой видеоаналитики дает мощный синергетический эффект.

В результате объединения преимуществ такого сигнала и такой его обработки становится возможным решение двух нетривиальных задач.

Первая из них – создание виртульного периметра с функцией раннего обнаружения подготовки к вторжению на охраняемую территорию распределенных объектов с высокими параметрами вероятности обнаружения и времени наработки на ложные тревоги, близкими к аналогичным параметрам традиционных средств охраны периметра. Видеоаналитика успешно справляется с задачей обнаружения – полученная в результате испытаний вероятность обнаружения составляет более 95% при частоте ложных срабатываний не более одного на сутки непрерывной работы. При этом интеграция такого виртуального рубежа с СФЗ проста и экономична.

Мисс Видеоаналитика и мистер Тепловизор.png

Однако мы сразу становимся перед дилеммой: создавать непрерывный в пространстве и времени рубеж контроля виртуального периметра по каскадной схеме или, наоборот, проводить разведку прилегающего пространства на возможную глубину. То есть строить периметр «вдоль или поперек», как я писал в BezopasnostNews 15 лет назад.
Вариант вдоль – пассивный. Кстати, только он дает полный без изъятий архив событий в периметровой полосе. При автоматическом обнаружении объекта в поле зрения система аналитики должна проанализировать (если нужно) его поведение и выдать тревожный сигнал. В таком случае система охранного теполвидения играет роль источника события. Далее вступает в действие оператор. Теперь предлагаю обратиться к геометрии.

На схеме показано примерное расположение тепловизионных камер на периметре исходя из максимальной дальности обнаружения 800 м и угла поля зрения около 6˚. Такие значения характерны для тепловизионного модуля, поставляемого многими фирмами, например, компанией GuardLiner. Фокусное расстояние объектива – 76 мм, приемник излучения – микроболометрическая матрица – 320 х 240 пикселей. При расположении камер вдоль периметра следует учитывать мертвую зону, которая при таких дальностях будет значительной и составлять примерно 15–18% максимальной дальности, а также учитывать глубину резко изображаемого пространства (ГРИП). Дело в том, что светосила объективов тепловизоров близка к теоретической. Это требуется из-за недостаточно высокого пропускания германия, ведь других-то материалов для изготовления объективов практически и нет. Ясно, что чем выше светосила, тем дальше гиперфокальное расстояние. Вот и получается, что камеры должны стоять через ¾ дальности наблюдения. При этом полоса гарантированного контроля термонаблюдения составит около 15 м. Тогда за периметр мы сможем заглядывать только треугольничками, основание которых составляет всего-то 60 м. Не густо. Можно постараться увеличить ширину поля зрения, используя сенсор с большим разрешением при той же детализации, но если пиксель меньше, то и сигнал меньше. Должен быть оптимум между числом пикселей и их размерами. А если из строя выйдет какая-либо камера, то положение становится совсем незавидным. Наш виртуальный периметр получит пробоину похуже, чем «Титаник».
Приходится дополнять такой периметр дальнобойными тепловизионными камерами, установленными внутри территории на возвышенных местах, и превратить ее в полуактивную или даже целиком активную.
На чем можно сэкономить? В первую очередь на данных разведки. Не вся же территория вокруг объекта одинакова. Есть дороги, кусты, овражки и т. п. складки местности. На них нужно настроить препозиции и постоянно контролировать их. Но это вероятностный способ. Лучше бы дополнить такой дальний теплопеленгатор радиолокатором и по его указанию наводить тепловизор на цель. Некоторые компании широко используют этот метод. Известно, например, программное обеспечение с развитым графическим интерфейсом, автоматического радарно-оптического комплекса обнаружения и слежения на основе РЛС Orwell-R и тепловизора.
Существуют оригинальные решения панорамного тепловизионного наблюдения, представленные французской фирмой HGH. Сенсором такого тепловизора является линейка элементов, установленная во вращающемся на гиростабилизированной платформе барабане и сканирующая окружающее пространство. Компьютерная программа позволяет развернуть цилиндрическое поле зрения и представить в различных масштабах все интересующие участки окрест прибора. На следующем рисунке показана панорама аэродрома с размещенными на стоянке самолетами и автомобилями и людьми, передвигающимися по территории объекта.

Очень важно отметить, что стратегия построения виртуального периметра неразрывно связана со стратегией действий охраны. Время, которое удается выиграть за счет раннего обнаружения, должно обеспечивать выдвижение достаточных сил противодействия и занятие ими штатных боевых позиций, используется ли тактика патрулирования с перехватом нарушителя на критическом маршруте или тактика блокирования предмета охраны с расположением сил в фортификационных сооружениях.
Таким образом, использовать пассивную тактику слежения за ближними подступами к периметру или активную тактику контроля дальних подступов проектировщик должен выбирать индивидуально для каждой СФЗ, учитывая все аспекты ее построения.

Вторая нетривиальная задача – выделение аномального поведения субъектов в зоне контроля. Поскольку субъекты, обнаруживаемые тепловизором, чаще всего живые люди, то селекция на фоне помех происходит в таком случае автоматически на раннем этапе анализа видеоконтента.
Оливер Веллакотт, генеральный директор компании IndigoVision, в 2007 г. утверждал, что реально видеоаналитика по большей части все еще находится в младенческом состоянии. Действительно, в то время на стендах выставок, представляющих аналитические модули и системы, было очень затруднительно получить от технических представителей компаний квалифицированный ответ на вопрос: «Как внутрь конфеты повидло попадает?», т. е. как работает представленная система.
Сегодняшняя видеоаналитика уже вполне в состоянии исправно решать целый ряд задач, в первую очередь алгоритмы которых построены на анализе параметров движения. Системы управления IP-видеонаблюдением (а современные тепловизионные системы, конечно же, относятся к отдельному виду IP-систем) представляют собой идеальную платформу для полной интеграции в систему мощных приложений видеоаналитики, превращая последние в ключевой и неотъемлемый элемент функционирования системы в целом.
Аномальным движением можно считать аномальную скорость движения (в том числе и остановку), направление движения против потока, по запрещенному маршруту, пересечение зон и границ зон отчуждения и др. При этом возможны следующие варианты – анализ Real Times, т. е. вживую с формированием тревожного сигнала, переключением изображений на тревожных мониторах и т. п., и анализ с формированием банка метаданных, т. е. подсказок и наводок, для проверки постфактум различных сценариев на архивном материале, что позволяет структурировать и резко снижать объемы пересылаемых по сети видеоданных и, между прочим, повышать требования режима к доступу архива, который будет проверять и обобщать аналитик, а не оператор.

Где должны быть локализованы вычислительные мощности системы?
Видеоаналитика на сервере:

Видеоаналитика в IP-камере:

Рассмотрим использование этих вариантов на примере тепловизионной системы кампании GuardLiner, испытания которой проводились по заданию РЖД.
На участке железнодорожного полотна была установлена тепловизионная камера, замаскированная с целью вандалозащиты под стандартный корпус средства железнодорожной сигнализации. Камера представляла собой тепловизионный модуль, описанный выше в настоящей статье.

Мисс Видеоаналитика и мистер Тепловизор.gifЗадачей испытания был анализ на предмет формирования тревоги по тепловизионному изображению ситуации перехода людей через железнодорожное полотно в поле зрения камеры. При этом движение без остановки не вызывало выделения ситуации как тревожного события, остановка же субъекта на путях более 3 секунд считалось тревожной ситуацией и маркировалась рамкой с указанием определенного объекта и параметров его движения. Причем рамка оставалась в кадре и после выхода объекта из поля зрения до снятия тревоги. Такая маркировка позволяла выделить как тревожное событие движение объекта по аномальным скоростным параметрам.

Второй опыт позволял установить факт сбрасывания на пути с пересекающего виадука предмета, представляющего опасность для проходящего транспорта.

Мисс Видеоаналитика и мистер Тепловизор.gifВ этом опыте выбрано другое направление движения опасного предмета, но и оно также детектировано и отмечено тревожным маркером.
Сочетание тепловизора с видеоаналитикой открывает широкие возможности для автоматизации наблюдения и оценки обстановки на охраняемом объекте, дает оперативный выигрыш во времени для реализации ответных мер. Однако остаются вопросы, на которые необходимо ответить на этапе проектирования конкретной СФЗ.

Мисс Видеоаналитика и мистер Тепловизор.gif
Мисс Видеоаналитика и мистер Тепловизор.gif

Хотелось бы выяснить мнение специалистов по следующим вопросам:

  1. Какие углы поля зрения тепловизионных камер следует выбирать для создания виртуального периметра?
  2. Как ориентировать эти камеры?
  3. Какие алгоритмы видеоаналитики необходимо реализовать при создании виртуального периметра?
  4. Как должны быть распределены вычислительные мощности системы видеоаналитики и где локализован архив системы?

По материалам tzmagazine.ru

Комментарии

Комментарии временно отсутствуют

Последние статьи

Квадрокоптеры с защитой от столкновений
Статьи

KARNEEV SYSTEMS

Квадрокоптеры с защитой от столкновений

Квадрокоптеры становятся все более популярными, как среди любителей, так и среди профессионалов. Однако, несмотря на их многочисленные преимущества, столкновения с препятствиями все еще являются серьезной проблемой.

Роль РЛС в обнаружении и перехвате БПЛА
Статьи

KARNEEV SYSTEMS

Роль РЛС в обнаружении и перехвате БПЛА

Проблема обнаружения БПЛА становится более актуальной и требует инновационных решений. Одним из технологических решений, позволяющих быстро обнаруживать БПЛА, являются радиолокационные системы (РЛС).

Как тепловизоры меняют отношение к охоте
Статьи

KARNEEV SYSTEMS

Как тепловизоры меняют отношение к охоте

Для многих мужчин охота является увлекательным хобби с огромным выбросом адреналина, однако обнаружить дикого зверя среди густых зарослей и высокой травы – это достаточно сложное занятие

Пожарный мониторинг складов
Статьи

KARNEEV SYSTEMS

Пожарный мониторинг складов

При пожаре на складе стоимость материальных потерь, а также потерь в человеческих жизнях может быть огромной. Именно поэтому пожарная безопасность становится одним из важнейших аспектов в промышленности и во всех местах, где сосредоточены люди и ценные материальные ресурсы.

Применение беспилотных летательных аппаратов в сельском хозяйстве
Статьи

KARNEEV SYSTEMS

Применение беспилотных летательных аппаратов в сельском хозяйстве

Одним из важных аспектов в сельскохозяйственной отрасли является мониторинг площади посадки. Собирать информацию о изменении рельефа, проводить лабораторные исследования почвы и отслеживать состояние культур фермерам помогают современные технологии.

Тепловизоры для охоты или обычные прицелы
Статьи

KARNEEV SYSTEMS

Тепловизоры для охоты или обычные прицелы

В арсенале каждого опытного охотника есть немало инструментов, которые помогают ему достичь успеха в любимом деле. Одно из таких устройств – тепловизор.

Тепловизионное обследование объектов
Статьи

KARNEEV SYSTEMS

Тепловизионное обследование объектов

Тепловизионное обследование зданий и сооружений позволяет обнаружить и быстро устранить утечки тепловой энергии. Неразрушающий тепловизионный контроль с составлением термограммы помогает повысить энергоэффективность зданий, а также уменьшить затраты на обогрев. Компания KARNEEV SYSTEMS предлагает эффективные системы для обследования жилых, промышленных, общественных и других зданий.

Особенности, применение и перспективы водозащитных БПЛА
Статьи

KARNEEV SYSTEMS

Особенности, применение и перспективы водозащитных БПЛА

В последние годы использование беспилотных летательных аппаратов (БПЛА) стало всеобщей практикой в различных отраслях. Особую роль они играют в авиации и гидрологии.

Радиолокационные системы: как они работают и где применяются?
Статьи

KARNEEV SYSTEMS

Радиолокационные системы: как они работают и где применяются?

Радиолокационные системы — это комплекс устройств, направленный на обнаружение объектов на большой площади. Они необходимы для охраны природных территорий и акваторий.